4509 - Bridging Mathematics

Vectors

PAULO FAGANDINI

Notation

Notation is important. For this set of slides consider:

- 1. Lowercase for elements of a vector, v_i .
- 2. Uppercase for vectors/matrices, V.
- 3. Calligraphic uppercase for sets, e.g., set S.

$$\left[\begin{array}{c}2\\3\end{array}\right] + \left[\begin{array}{c}-3\\-1\end{array}\right] = \left[\begin{array}{c}-1\\2\end{array}\right]$$

0.5v?

We can write any vector in the plane as the result of the product and sum of u and v (a.k.a. a *linear combination*). These vectors, are not special, except for 1 thing... they are linearly independent.

Consider now these two vectors e and f...

Consider now these two vectors e and f...

We can only "create" vectors along the same line, the line that goes in the direction of vectors e and f. These vectors are linearly dependent.

Actually, we only needed one of them to create all the others that we could draw!

A **vector** is an element V of \mathbb{R}^n , for $n \geq 2$. A scalar is an element of \mathbb{R} .

Vectors are to be written as columns, example:

$$V = \left(egin{array}{c} v_1 \ v_2 \ \dots \ v_{n-1} \ v_n \end{array}
ight) \quad \in \quad \mathbb{R}^n$$

Let $X, Y \in \mathbb{R}^n$, and $\alpha \in \mathbb{R}$, then

1. The sum,

$$X + Y = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} + \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} x_1 + y_1 \\ \vdots \\ x_n + y_n \end{pmatrix}$$

2. Scalar multiplication,

$$\alpha X = \begin{pmatrix} \alpha x_1 \\ \vdots \\ \alpha x_n \end{pmatrix}$$

 $0 \in \mathbb{R}^n$ is,

$$\left(\begin{array}{c}0\\\vdots\\0\end{array}\right)$$

that is a vector of dimension $n \times 1$ filled with zeroes.

A **vector space** S, satisfies that, for any $A, B \in S$, and $\alpha \in \mathbb{R}$,

- $\blacksquare (A+B) \in \mathcal{S}$
- \bullet $\alpha A \in \mathcal{S}$

It is trivial to show that \mathbb{R}^n is a vector space.

Definition

A nonempty set $S \subseteq \mathbb{R}^n$ is a **vector subspace** of \mathbb{R}^n if, with the vector addition and the scalar multiplication it is a vector space by itself.

Conjecture

Let $\mathcal{V} \subseteq \mathbb{R}^n$, nonempty. \mathcal{V} is a vector subspace of \mathbb{R}^n if and only if,

- 1. $0 \in \mathcal{V}$,
- 2. $a, b \in \mathcal{V}, \alpha \in \mathbb{R}$, then $a + \alpha b \in \mathcal{V}$

Quick quiz! 15 min to prove it!

Proof.

- ⇒... If $\mathcal V$ is v.s. of $\mathbb R^n$, we know that the scalar multiplication and the sum is in the space. Because scalar mult. we know that $\alpha b \in \mathcal V$, so the sum must be in $\mathcal V$ too.
- \Leftarrow ... If $a + \alpha b \in \mathcal{V}$, then it holds in particular for $\alpha = 1$, so the sum is *closed* in the space. Also, let a = 0, and you have the scalar multiplication. Then \mathcal{V} must be a v.s.

Let $\mathcal{V} \subseteq \mathbb{R}^n$ be a set of k vectors, then, $Z \in \mathbb{R}^n$ is a **linear combination** of the vectors $\{V_i\}_{i=1}^k$ in \mathcal{V} if there are scalars α_j j=1,...,k such that,

$$Z = \sum_{j=1}^{k} \alpha_j V_j$$

Definition

A **linear subspace** generated by the vectors in V, represented L(V), is the set of all the linear combinations of those vectors.

Conjecture

- 1. Let $V, W \subseteq \mathbb{R}^n$, such that $V \subseteq W$, then $L(V) \subseteq L(W)$
- 2. If $Y \in L(\mathcal{V})$, then $L(\{Y\} \cup \mathcal{V}) = L(\mathcal{V})$
- 3. Given a nonempty $\mathcal{V} \subseteq \mathbb{R}^n$, then $L(\mathcal{V})$ is a vector subspace of \mathbb{R}^n .

Quick quiz! Prove it ightarrow 15 min.

Proof.

- 1. Trivial. If $X \in L(\mathcal{V}) \Rightarrow X = \sum_{v_i \in \mathcal{V}} \alpha_i v_i$, and because $\mathcal{V} \subseteq \mathcal{W}$ those vectors are also part of \mathcal{W} , so $X \in L(\mathcal{W})$, so $L(\mathcal{V}) \subseteq L(\mathcal{W})$.
- - We need then $L(\mathcal{V} \cup \{Y\}) \subseteq L(\mathcal{V})$.
 - Let $X \in L(\mathcal{V} \cup \{Y\})$, then there are scalars α_i such that

$$X = \sum_{\mathbf{v}_i \in \mathcal{V}} \alpha_i \mathbf{v}_i + \beta \mathbf{Y}$$

- As $Y \in L(V)$ there are scalars γ_i such that $Y = \sum_{v_i \in V} \gamma_i v_i$
- $X = \sum_{v_i \in \mathcal{V}} \alpha_i v_i + \beta \left(\sum_{v_i \in \mathcal{V}} \gamma_i v_i \right) = \sum_{v_i \in \mathcal{V}} (\alpha_i + \beta \gamma_i) v_i$. But $\alpha + \beta \gamma$ is a scalar, so
- $X \in L(V)$, proof is complete.
- 3. 0 belongs to any L(), as it is the case with scalars =0. Now, let $X,Y\in L(\mathcal{V})$ and $\gamma\in\mathbb{R}; X+\gamma Y=\sum_{v_i\in\mathcal{V}}(\alpha_i+\gamma\beta_i)v_i$ if we write each vector as a linear comb. For the same argument used before, we complete the proof.

A set of k vectors $\mathcal{V} \subseteq \mathbb{R}^n$ is **linearly independent** if, $\forall \alpha_j \in \mathbb{R}$

$$\sum_{j=1}^{k} \alpha_k V_j = 0 \quad \Leftrightarrow \quad \alpha_j = 0$$

Definition

Conversely, if there are $\{\alpha_i\}_{i=1}^k$, with at least one $\alpha_k \neq 0$, then they are **linearly dependent.**

The set of vectors $\mathcal{X} \subseteq \mathcal{V}$ generates the vector subspace $\mathcal{V} \subseteq \mathbb{R}^n$ if any $V \in \mathcal{V}$ can be written as a linear combination of the vectors in \mathcal{X} .

Moreover, if the vectors in \mathcal{X} are linearly independent, then \mathcal{X} is called a **basis** of \mathcal{V} .

Conjecture

Let $\mathcal{X} = \{X_1, X_2, \dots, X_k\}$ a basis of the vector subspace $\mathcal{V} \subseteq \mathbb{R}^n$. Then, for any $V \in \mathcal{V}$, there are **unique** scalars $\{\alpha_i\}_{i=1}^k$ such that

$$V = \alpha_1 X_1 + \alpha_2 X_2 + \ldots + \alpha_k X_k$$

Conjecture

Any set of n linearly independent vectors $\mathcal{X} \subseteq \mathbb{R}^n$, generates \mathbb{R}^n

The **dimension** of a vector space \mathcal{V} is the maximum number of l.i. vectors that generates it. This number coincides with the number of vectors in any basis of the space. It is denoted $dim(\mathcal{V})$.

Given $X, Y \in \mathbb{R}^n$, the **inner product** corresponds to:

$$X \cdot Y = \sum_{j=1}^{n} x_j y_j \in \mathbb{R}$$

Definition

The **Euclidean norm** of a vector $X \in \mathbb{R}^n$ is:

$$||X|| = \sqrt{X \cdot X} = \sqrt{\sum_{j=1}^{n} x_j^2} \in \mathbb{R}$$

For $X, Y \in \mathbb{R}^n$, the **Euclidean distance** between them is defined as:

$$d(X, Y) = ||X - Y||$$

For $X, Y \in \mathbb{R}^n$, both different from zero, the **angle** between them, denoted as $\angle(X, Y)$, is defined as the value that satisfies,

$$\cos(\angle(X,Y)) = \frac{X \cdot Y}{||X|| \cdot ||Y||} \in [-1,1]$$

Definition

Two vectors X, Y are **orthogonal**, if $\angle(X, Y) = 90^{\circ}$, or equivalently, $X \cdot Y = 0$. It is denoted as $X \perp Y$.

Let $X \in \mathbb{R}^n$. If ||X|| = 1, X is a unit vector.

Definition

Consider two vectors $X, Y \in \mathbb{R}^n$, both different from zero. The **projection** of Y over X is defined as:

$$proj_X Y = Y \cdot \frac{X}{||X||}$$

The **rejection**, is defined as:

$$rej_X Y = Y - proj_X Y$$

The rejection is orthogonal to X.

In econometrics, the endogenous variable would be Y. We try to explain it with the exogenous variable X, so we "project" Y over X. Of course, what is not explained, the error, is $rej_X Y$.

The **projection** of a vector Y over a subspace \mathcal{V} defined by a basis $\{X_1, X_2, \dots, X_k\}$ is the vector $proj_{\mathcal{V}}Y$, and it must satisfy that

$$[proj_{\mathcal{V}}Y - Y] \perp X_i \quad \forall i = 1, ..., k$$

Here we could be projecting the exogenous variable over two explanatory variables...

