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N o t a t i o n

Notation is important. For this set of slides consider:
1. Lowercase for elements of a vector, vi .
2. Uppercase for vectors/matrices, V .
3. Calligraphic uppercase for sets, e.g., set S.
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We can write any vector in the plane as the result of the product and sum of u and v
(a.k.a. a linear combination). These vectors, are not special, except for 1 thing... they
are linearly independent.
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Consider now these two vectors e and f ...

e

f

e

f
d = 0.7× e +−0.2× f
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Consider now these two vectors e and f ...

e

f

d = −0.7× e +−0.3× f
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We can only “create” vectors along the same line, the line that goes in the direction of
vectors e and f . These vectors are linearly dependent.

Actually, we only needed one of them to create all the others that we could draw!

P. Fagandini



v

3

2

ı̂

̂

v = 3× ı̂+ 2× ̂ = 3×
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D e fi n i t i o n

A vector is an element V of Rn, for n ≥ 2. A scalar is an element of R.

Vectors are to be written as columns, example:

V =


v1
v2
. . .

vn−1

vn

 ∈ Rn
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Let X ,Y ∈ Rn, and α ∈ R, then
1. The sum,

X + Y =

 x1
...

xn

+

 y1
...

yn

 =

 x1 + y1
...

xn + yn


2. Scalar multiplication,

αX =

 αx1
...

αxn


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0 ∈ Rn is,

 0
...
0


that is a vector of dimension n × 1 filled with zeroes.
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D e fi n i t i o n

A vector space S, satisfies that, for any A,B ∈ S, and α ∈ R,
(A + B) ∈ S
αA ∈ S

It is trivial to show that Rn is a vector space.

D e fi n i t i o n

A nonempty set S ⊆ Rn is a vector subspace of Rn if, with the vector addition and
the scalar multiplication it is a vector space by itself.
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C o n j e c t u r e

Let V ⊆ Rn, nonempty. V is a vector subspace of Rn if and only if,
1. 0 ∈ V,
2. a, b ∈ V, α ∈ R, then a + αb ∈ V

Quick quiz! 15 min to prove it!
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P r o o f .

⇒... If V is v.s. of Rn, we know that the scalar multiplication and the sum is in
the space. Because scalar mult. we know that αb ∈ V, so the sum must be in V
too.
⇐... If a + αb ∈ V, then it holds in particular for α = 1, so the sum is closed in
the space. Also, let a = 0, and you have the scalar multiplication. Then V must
be a v.s.
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D e fi n i t i o n

Let V ⊆ Rn be a set of k vectors, then, Z ∈ Rn is a linear combination of the
vectors {Vi}k

i=1in V if there are scalars αj j = 1, ..., k such that,

Z =

k∑
j=1

αjVj

D e fi n i t i o n

A linear subspace generated by the vectors in V, represented L(V), is the set of all
the linear combinations of those vectors.
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C o n j e c t u r e

1. Let V,W ⊆ Rn, such that V ⊆ W, then L(V) ⊆ L(W)

2. If Y ∈ L(V), then L({Y } ∪ V) = L(V)
3. Given a nonempty V ⊆ Rn, then L(V) is a vector subspace of Rn.

Quick quiz! Prove it → 15 min.
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P r o o f .

1. Trivial. If X ∈ L(V) ⇒ X =
∑

vi∈V αivi , and because V ⊆ W those vectors are
also part of W, so X ∈ L(W), so L(V) ⊆ L(W).

2. As V ⊆ V ∪ {Y }, we have that L(V) ⊆ L(V ∪ {Y }).
We need then L(V ∪ {Y }) ⊆ L(V).
Let X ∈ L(V ∪ {Y }), then there are scalars αi such that

X =
∑
vi∈V

αivi + βY

As Y ∈ L(V) there are scalars γi such that Y =
∑

vi∈V γivi
X =

∑
vi∈V αivi + β

(∑
vi∈V γivi

)
=

∑
vi∈V(αi + βγi)vi . But α+ βγ is a scalar, so

X ∈ L(V), proof is complete.
3. 0 belongs to any L(), as it is the case with scalars = 0. Now, let X ,Y ∈ L(V) and

γ ∈ R; X + γY =
∑

vi∈V(αi + γβi)vi if we write each vector as a linear comb.
For the same argument used before, we complete the proof.
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D e fi n i t i o n

A set of k vectors V ⊆ Rn is linearly independent if, ∀αj ∈ R

k∑
j=1

αkVj = 0 ⇔ αj = 0

D e fi n i t i o n

Conversely, if there are {αi}k
i=1, with at least one αk 6= 0, then they are linearly

dependent.

P. Fagandini



D e fi n i t i o n

The set of vectors X ⊆ V generates the vector subspace V ⊆ Rn if any V ∈ V can be
written as a linear combination of the vectors in X .

Moreover, if the vectors in X are linearly independent, then X is called a basis of V.
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C o n j e c t u r e

Let X = {X1,X2, . . . ,Xk} a basis of the vector subspace V ⊆ Rn. Then, for any
V ∈ V, there are unique scalars {αi}k

i=1 such that

V = α1X1 + α2X2 + . . .+ αkXk

C o n j e c t u r e

Any set of n linearly independent vectors X ⊆ Rn, generates Rn
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D e fi n i t i o n

The dimension of a vector space V is the maximum number of l .i . vectors that
generates it. This number coincides with the number of vectors in any basis of the
space. It is denoted dim(V).
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D e fi n i t i o n

Given X ,Y ∈ Rn, the inner product corresponds to:

X · Y =

n∑
j=1

xjyj ∈ R

D e fi n i t i o n

The Euclidean norm of a vector X ∈ Rn is:

||X || =
√

X · X =

√√√√ n∑
j=1

x2
j ∈ R
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D e fi n i t i o n

For X ,Y ∈ Rn, the Euclidean distance between them is defined as:

d(X ,Y ) = ||X − Y ||
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D e fi n i t i o n

For X ,Y ∈ Rn, both different from zero, the angle between them, denoted as
∠(X ,Y ), is defined as the value that satisfies,

c o s (∠(X ,Y )) =
X · Y

||X || · ||Y ||
∈ [−1, 1]

D e fi n i t i o n

Two vectors X ,Y are orthogonal, if ∠(X ,Y ) = 90◦, or equivalently, X · Y = 0. It is
denoted as X ⊥ Y .

P. Fagandini



D e fi n i t i o n

Let X ∈ Rn. If ||X || = 1, X is a unit vector.

D e fi n i t i o n

Consider two vectors X ,Y ∈ Rn, both different from zero. The projection of Y over
X is defined as:

projX Y = Y · X
||X ||

The rejection, is defined as:

rejX Y = Y − projX Y

The rejection is orthogonal to X .
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X

Y
rejX Y

projX Y

In econometrics, the endogenous variable would be Y . We try to explain it with the
exogenous variable X , so we “project” Y over X . Of course, what is not explained, the
error, is rejX Y .
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D e fi n i t i o n

The projection of a vector Y over a subspace V defined by a basis {X1,X2, . . . ,Xk} is
the vector projVY , and it must satisfy that

[projVY − Y ] ⊥ Xi ∀i = 1, ..., k

P. Fagandini



V

Y

projVY

Here we could be projecting the exogenous variable over two explanatory variables...
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